Vectoranalyse

Exam solutions

1. (a) The point (xo, Yo, 20) indeed lies on S since f(1,1,2) = 0. The tangent plane of S at (xo, Yo, 20)
then is

fz(%0, Y0, 20)(x — z0) + fy(T0, Y0, 20) (Y — Yo) + f=(T0, Y0, 20)(2 — 20) = 0.

We have f,(z,y,2) = 2z, fy(z,y,2) = 2y and f.(z,y,z) = 42° —32%. This gives f,(1,1,2) = 2,
fy(1,1,2) =2 and f,(1,1,2) = 20. The tangent plane is thus given by

20z -1)+2(y—1)+20(z—2) =0.

(b) Because f is of class C! (in fact it is smooth) and f.(1,1,2) # 0, the result directly follows
from the Implicit Function theorem.

(c) Denote G(z,y,2) = z— g(z,y). Then the graph of g is the set {(x,y,2) € R®: G(z,y, z) = 0}.
The tangent plane to the graph at a point (xg, Yo, g(o, yo)) is given by

VG(xO7y07g(‘T0a yO)) : (.’L‘ —20,Y —Yo,2 — 9(5‘70’90)) =0
ie.
(=92(x0,%0), =gy (20, %0), 1) - (z — z0, ¥ — Yo, 2 — g(x0, %0)) = 0.
Let g now be the implicit function found in (b). The derivatives g, and g, are obtained
from implicit differentiation, i.e. from differentiating the equation f(x,y,g(z,y)) = 0 with
respect to z and y, respectively. This gives g.(z,y) = —f(x,y,9(z,vy))/ f-(x,y,9(z,y)) and
gy(z,y) = —fy(z,y,9(z,y))/ f-(2,y,9(x,y)). At the point (z0,y0) = (1,1) we have g(zo,y0) =

2 and from (a) g.(zo,v0) = gy(z0,Y0) = —2/20 = —1/10. The equation for the tangent plane
of the graph of g at the point xo, yo, g(o,yo) is thus

S )+ (-2 =0

which is equivalent to the equation to the equation defining the tangent plane in (a).

2. (a) We have
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(b) Using (a) we have
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A straightforward computation then gives
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(a) We can compute the integral using the parametrization X(p) = (cos(p),sin(p), ¢) with ¢ €
[0, 27] to obtain
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(b) Let r = /22 + y2. Then
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The left hand side of Stokes’s formula is thus zero. For the right hand side note that 9D
consists of the two circles of radius 1 and a in the z-plane centered at the origin. Let us denote
these circles by C'y and C,. Viewing these circles as the boundary of D, they will have opposite

orientation. Thus
/F-ds:/F~ds—/F~ds.
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Let us consider the integral along C,. We can parametrize C, according to X(y) = (acos ¢, asin ¢, 0)
with 0 < ¢ < 27. Thus
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This result does not depend on a. For a = 1 (which gives the circle Cy) we thus get the same
result. The right hand side of Stokes’ formula is therefore also zero.

(c) The vector field F is not conservative as a vector field on R®. Although we have V x F = 0
we cannot conclude that F is conservative because F is not defined on the z-axis. In fact, R?
without the z-axis is not simply connected. However, simple connectivity is required to deduce
conservativety from a vanishing curl. For a conservative vector field, the line integrals along
closed curves are zero. In (b) we saw that this is not the case for F, as, e.g., the line integral
along the circle 22 4+ %2 = 1 in the z-plane is 2.

(d) In (b) we saw that the line integral of F along the unit circle C; in the z-plane is 27. Let
us now consider a circle C' obtained from deforming C; without intersecting the z-axis. Let
D denote the region swept out by the deformation from the unit circle Cy to the deformed
circle C. The boundary of D is then 0D = C' — Cy. Applying Stokes’ theorem and using that
V x F = 0 we see that the line integrals along C' and C are identical. An absolute value is

used in the statement because we have two choices for the orientation of D (and hence of C'
and Cl)



4. For the first two parts it is useful to use spherical coordinates x = rcospsind, y = rsin @ sin ¢,
z=rcost, r>0,¢ecl0,2n],del0,n]

(a)

In spherical coordinates the sphere in the first octant is given by 7 = a, ¢ € [0, 5], ¢ € [0, 5].
The unit normal of the sphere is given by n = 1(z,y,2) (note that |n|| = 1). We have
Vi(z,y,z) = T%(a:,y7z). Hence Vf(z,y,z) -n = % on S. We thus need to integrate the
constant function % over one eighth of the sphere of radius a. Using that the surface area of
a (full) sphere of radius a is 47ra® we find
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Working this out in detail by hand using the parametrization gives of course the same result.

We have V - Vf(z,y,2) = V- T%(a:,y,z) = T% For spherical coordinates, we have dV =

r2sin v dddedr. Using symmetry we find that the integral of 7% over D is equal to one eighth
of the integral of T% over the solid ball of radius a. Thus
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From Gauss’s Theorem it follows that

/D//v-(Vf)dvza/D/Vf-ds:/S/gidSJr//gids.
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The part of 9D not contained in S (i.e. the surface in the last integral) consists of the Cartesian
coordinate planes (or more precisely the parts of these planes in the first octant where the
points have distance to the origin less than or equal to a). On the plane x = 0 we have
n = (1,0,0) and Vf(0,y,2) = %(0,y,2) and hence % = V/f-n = 0 on the plane z = 0.
This similarly holds for the planes y = 0 and z = 0. The last integral above thus gives no
contribution and the equality between the results in (a) and (b) is established.

We have the identities
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Since the integrals are zero for any region D in R® the integrand must be zero. This proves
the statement.
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